UNIVERSITÀ DEGLI STUDI DI CATANIA	COGNOME e NOME:	
Anno Accademico 2019 - 2020	(STAMPATELLO)	
Corso di Laurea in Ingegneria Civile e Ambientale	MATRICOLA:	
Corso di Analisi Matematica I		
Prova scritta del		

Non sono consentiti formulari, appunti, libri e calcolatori; non è consentito comunicare con i colleghi; ogni mezzo di comunicazione elettronico deve essere tenuto spento. Durante la prova non è possibile uscire dall'aula.

Il **requisito minimo** per superare la prova scritta ed essere ammessi al colloquio orale è di svolgere l'esercizio 3 e altri due esercizi del **quesito di tipo E**. Inoltre occorre svolgere correttamente almeno un quesito di tipo D e un solo quesito di tipo T.

Tempo disponibile: 180 minuti.

Quesiti di tipo E (esercizi.)

1) Calcolare il dominio della funzione reale f definita dalla legge $f(x) = \log_{\frac{1}{2}} \left(3 - \log_2 \left(\frac{x^2 - 9}{x} \right) \right)$.

Soluzione:

2) Calcolare il seguente limite $\lim_{x \to +\infty} \frac{(\sin x + 2) 2^{2x}}{\sin(2^{-x^2})}$

Soluzione:

3) Considerata la seguente funzione reale di variabile reale:

$$f(x) = \sqrt{\left|\frac{x}{x-4}\right|} e^{\frac{4-x}{x}}$$

determinare il dominio di esistenza, eventuali asintoti. Studiare la continuità, la derivabilità, la monotonia e determinare gli estremi relativi e assoluti. Infine tracciare un grafico qualitativo della funzione.

Inoltre,

- dire per quali valori di k reale positivo, l'equazione $\sqrt{\left|\frac{x}{x-4}\right|}$ e $\frac{4-x}{x}=k$ ammette un'unica soluzione reale;
- calcolare f(2) e determinare la derivata di $f^{-1}(y)$ nel punto $y_0={\bf e}.$
- 4) Calcolare il seguente integrale indefinito

$$\int \frac{\arctan x}{(x+1)^2} \, \mathrm{d}x.$$

5) Dire per quali valori di $x \in \mathbb{R}$ esiste finito il seguente $\lim_{n \to +\infty} \left(x^2 + \frac{3}{4}\right)^n \tan \frac{1}{n+1}$.

Quesiti di tipo D (definizioni)

- 1) Sia $f:(a,b)\to\mathbb{R}$ e $x_0\in]a,b[$. Si dice che f è derivabile in x_0 se ... (completare). Si chiama derivata di f in x_0 ... (completare). Calcolare, usando solo la definizione, la derivata in $x_0=1$ di f la cui legge è $f(x)=e^x$.
- 2) Siano $\{a_n\}_{n\in\mathbb{N}}$ e $\{b_n\}_{n\in\mathbb{N}}$ due successioni numeriche. Si dice che la successione $\{a_n\}_{n\in\mathbb{N}}$ è CONVERGENTE A π e si scrive $\lim_{n\to\infty}a_n=\pi$, se ... (completare). Si dice che la successione $\{b_n\}_{n\in\mathbb{N}}$ è divergente A $-\infty$ e si scrive $\lim_{n\to\infty}b_n=-\infty$, se ... (completare). Dire, giustificando la risposta, se la successione $\{a_n\}_{n\in\mathbb{N}}$ è limitata.

Quesiti di tipo T (teoremi)

- 1) Enunciare e dimostrare il teorema di derivabilità della funzione prodotto di due funzioni derivabili in x_0 .
- 2) Enunciare e dimostrare il teorema di Rolle.